Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(12)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38138081

RESUMEN

Mutations in the SARS-CoV-2 genome can alter the virus' fitness, leading to the emergence of variants of concern (VOC). In Brazil, the Gamma variant dominated the pandemic in the first half of 2021, and from June onwards, the first cases of Delta infection were documented. Here, we investigate the introduction and dispersal of the Delta variant in the RS state by sequencing 1077 SARS-CoV-2-positive samples from June to October 2021. Of these samples, 34.7% were identified as Gamma and 65.3% as Delta. Notably, 99.2% of Delta sequences were clustered within the 21J lineage, forming a significant Brazilian clade. The estimated clock rate was 5.97 × 10-4 substitutions per site per year. The Delta variant was first reported on 17 June in the Vinhedos Basalto microregion and rapidly spread, accounting for over 70% of cases within nine weeks. Despite this, the number of cases and deaths remained stable, possibly due to vaccination, prior infections, and the continued mandatory mask use. In conclusion, our study provides insights into the Delta variant circulating in the RS state, highlighting the importance of genomic surveillance for monitoring viral evolution, even when the impact of new variants may be less severe in a given region.

2.
Viruses ; 15(6)2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37376568

RESUMEN

Introduction-The dynamics of SARS-CoV-2 shedding and replication in humans remain incompletely understood. Methods-We analyzed SARS-CoV-2 shedding from multiple sites in individuals with an acute COVID-19 infection by weekly sampling for five weeks in 98 immunocompetent and 25 immunosuppressed individuals. Samples and culture supernatants were tested via RT-PCR for SARS-CoV-2 to determine viral clearance rates and in vitro replication. Results-A total of 2447 clinical specimens were evaluated, including 557 nasopharyngeal swabs, 527 saliva samples, 464 urine specimens, 437 anal swabs and 462 blood samples. The SARS-CoV-2 genome sequences at each site were classified as belonging to the B.1.128 (ancestral strain) or Gamma lineage. SARS-CoV-2 detection was highest in nasopharyngeal swabs regardless of the virus strain involved or the immune status of infected individuals. The duration of viral shedding varied between clinical specimens and individual patients. Prolonged shedding of potentially infectious virus varied from 10 days up to 191 days, and primarily occurred in immunosuppressed individuals. Virus was isolated in culture from 18 nasal swab or saliva samples collected 10 or more days after onset of disease. Conclusions-Our findings indicate that persistent SARS-CoV-2 shedding may occur in both competent or immunosuppressed individuals, at multiple clinical sites and in a minority of subjects is capable of in vitro replication.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Prueba de COVID-19 , Manejo de Especímenes , Esparcimiento de Virus , ARN Viral/genética
3.
Lancet Microbe ; 2(10): e527-e535, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34258603

RESUMEN

BACKGROUND: Mutations accrued by SARS-CoV-2 lineage P.1-first detected in Brazil in early January, 2021-include amino acid changes in the receptor-binding domain of the viral spike protein that also are reported in other variants of concern, including B.1.1.7 and B.1.351. We aimed to investigate whether isolates of wild-type P.1 lineage SARS-CoV-2 can escape from neutralising antibodies generated by a polyclonal immune response. METHODS: We did an immunological study to assess the neutralising effects of antibodies on lineage P.1 and lineage B isolates of SARS-CoV-2, using plasma samples from patients previously infected with or vaccinated against SARS-CoV-2. Two specimens (P.1/28 and P.1/30) containing SARS-CoV-2 lineage P.1 (as confirmed by viral genome sequencing) were obtained from nasopharyngeal and bronchoalveolar lavage samples collected from patients in Manaus, Brazil, and compared against an isolate of SARS-CoV-2 lineage B (SARS.CoV2/SP02.2020) recovered from a patient in Brazil in February, 2020. Isolates were incubated with plasma samples from 21 blood donors who had previously had COVID-19 and from a total of 53 recipients of the chemically inactivated SARS-CoV-2 vaccine CoronaVac: 18 individuals after receipt of a single dose and an additional 20 individuals (38 in total) after receipt of two doses (collected 17-38 days after the most recent dose); and 15 individuals who received two doses during the phase 3 trial of the vaccine (collected 134-230 days after the second dose). Antibody neutralisation of P.1/28, P.1/30, and B isolates by plasma samples were compared in terms of median virus neutralisation titre (VNT50, defined as the reciprocal value of the sample dilution that showed 50% protection against cytopathic effects). FINDINGS: In terms of VNT50, plasma from individuals previously infected with SARS-CoV-2 had an 8·6 times lower neutralising capacity against the P.1 isolates (median VNT50 30 [IQR <20-45] for P.1/28 and 30 [<20-40] for P.1/30) than against the lineage B isolate (260 [160-400]), with a binominal model showing significant reductions in lineage P.1 isolates compared with the lineage B isolate (p≤0·0001). Efficient neutralisation of P.1 isolates was not seen with plasma samples collected from individuals vaccinated with a first dose of CoronaVac 20-23 days earlier (VNT50s below the limit of detection [<20] for most plasma samples), a second dose 17-38 days earlier (median VNT50 24 [IQR <20-25] for P.1/28 and 28 [<20-25] for P.1/30), or a second dose 134-260 days earlier (all VNT50s below limit of detection). Median VNT50s against the lineage B isolate were 20 (IQR 20-30) after a first dose of CoronaVac 20-23 days earlier, 75 (<20-263) after a second dose 17-38 days earlier, and 20 (<20-30) after a second dose 134-260 days earlier. In plasma collected 17-38 days after a second dose of CoronaVac, neutralising capacity against both P.1 isolates was significantly decreased (p=0·0051 for P.1/28 and p=0·0336 for P.1/30) compared with that against the lineage B isolate. All data were corroborated by results obtained through plaque reduction neutralisation tests. INTERPRETATION: SARS-CoV-2 lineage P.1 might escape neutralisation by antibodies generated in response to polyclonal stimulation against previously circulating variants of SARS-CoV-2. Continuous genomic surveillance of SARS-CoV-2 combined with antibody neutralisation assays could help to guide national immunisation programmes. FUNDING: São Paulo Research Foundation, Brazilian Ministry of Science, Technology and Innovation and Funding Authority for Studies, Medical Research Council, National Council for Scientific and Technological Development, National Institutes of Health. TRANSLATION: For the Portuguese translation of the abstract see Supplementary Materials section.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Brasil/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , SARS-CoV-2/genética , Estados Unidos , Vacunación
4.
Clin Infect Dis ; 73(11): 2045-2054, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-33956939

RESUMEN

BACKGROUND: Immunity after dengue virus (DENV) infection has been suggested to cross-protect from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and mortality. METHODS: We tested whether serologically proven prior DENV infection diagnosed in September-October 2019, before the coronavirus disease 2019 (COVID-19) pandemic, reduced the risk of SARS-CoV-2 infection and clinically apparent COVID-19 over the next 13 months in a population-based cohort in Amazonian Brazil. Mixed-effects multiple logistic regression analysis was used to identify predictors of infection and disease, adjusting for potential individual and household-level confounders. Virus genomes from 14 local SARS-CoV-2 isolates were obtained using whole-genome sequencing. RESULTS: Anti-DENV immunoglobulin G (IgG) was found in 37.0% of 1285 cohort participants (95% confidence interval [CI]: 34.3% to 39.7%) in 2019, with 10.4 (95% CI: 6.7-15.5) seroconversion events per 100 person-years during the follow-up. In 2020, 35.2% of the participants (95% CI: 32.6% to 37.8%) had anti-SARS-CoV-2 IgG and 57.1% of the 448 SARS-CoV-2 seropositives (95% CI: 52.4% to 61.8%) reported clinical manifestations at the time of infection. Participants aged >60 years were twice more likely to have symptomatic COVID-19 than children under 5 years. Locally circulating SARS-CoV-2 isolates were assigned to the B.1.1.33 lineage. Contrary to the cross-protection hypothesis, prior DENV infection was associated with twice the risk of clinically apparent COVID-19 upon SARS-CoV-2 infection, with P values between .025 and .039 after adjustment for identified confounders. CONCLUSIONS: Higher risk of clinically apparent COVID-19 among individuals with prior dengue has important public health implications for communities sequentially exposed to DENV and SARS-CoV-2 epidemics.


Asunto(s)
COVID-19 , Dengue , Brasil/epidemiología , Niño , Preescolar , Estudios de Cohortes , Dengue/epidemiología , Humanos , Pandemias , SARS-CoV-2
5.
J Med Virol ; 93(9): 5603-5607, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33851749

RESUMEN

It has been estimated that individuals with COVID-19 can shed replication-competent virus up to a maximum of 20 days after initiation of symptoms. The majority of studies that addressed this situation involved hospitalized individuals and those with severe disease. Studies to address the possible presence of SARS-CoV-2 during the different phases of COVID-19 disease in mildly infected individuals, and utilization of viral culture techniques to identify replication-competent viruses, have been limited. This report describes two patients with mild forms of the disease who shed replication-competent virus for 24 and 37 days, respectively, after symptom onset.


Asunto(s)
COVID-19/inmunología , COVID-19/virología , SARS-CoV-2/crecimiento & desarrollo , Cultivo de Virus , Animales , Chlorocebus aethiops , Femenino , Humanos , Persona de Mediana Edad , SARS-CoV-2/patogenicidad , Células Vero/ultraestructura , Células Vero/virología , Carga Viral , Esparcimiento de Virus
6.
Science ; 372(6544): 815-821, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33853970

RESUMEN

Cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Manaus, Brazil, resurged in late 2020 despite previously high levels of infection. Genome sequencing of viruses sampled in Manaus between November 2020 and January 2021 revealed the emergence and circulation of a novel SARS-CoV-2 variant of concern. Lineage P.1 acquired 17 mutations, including a trio in the spike protein (K417T, E484K, and N501Y) associated with increased binding to the human ACE2 (angiotensin-converting enzyme 2) receptor. Molecular clock analysis shows that P.1 emergence occurred around mid-November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.7- to 2.4-fold more transmissible and that previous (non-P.1) infection provides 54 to 79% of the protection against infection with P.1 that it provides against non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness.


Asunto(s)
COVID-19/epidemiología , COVID-19/virología , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/virología , SARS-CoV-2/clasificación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Brasil/epidemiología , Monitoreo Epidemiológico , Genoma Viral , Genómica , Humanos , Modelos Teóricos , Epidemiología Molecular , Mutación , Unión Proteica , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/metabolismo , Carga Viral
7.
medRxiv ; 2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33688664

RESUMEN

Cases of SARS-CoV-2 infection in Manaus, Brazil, resurged in late 2020, despite high levels of previous infection there. Through genome sequencing of viruses sampled in Manaus between November 2020 and January 2021, we identified the emergence and circulation of a novel SARS-CoV-2 variant of concern, lineage P.1, that acquired 17 mutations, including a trio in the spike protein (K417T, E484K and N501Y) associated with increased binding to the human ACE2 receptor. Molecular clock analysis shows that P.1 emergence occurred around early November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.4-2.2 times more transmissible and 25-61% more likely to evade protective immunity elicited by previous infection with non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness.

8.
Wellcome Open Res ; 6: 241, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37224315

RESUMEN

Emerging and re-emerging viruses are a global health concern. Genome sequencing as an approach for monitoring circulating viruses is currently hampered by complex and expensive methods. Untargeted, metagenomic nanopore sequencing can provide genomic information to identify pathogens, prepare for or even prevent outbreaks. SMART (Switching Mechanism at the 5' end of RNA Template) is a popular approach for RNA-Seq but most current methods rely on oligo-dT priming to target polyadenylated mRNA molecules. We have developed two random primed SMART-Seq approaches, a sequencing agnostic approach 'SMART-9N' and a version compatible rapid adapters  available from Oxford Nanopore Technologies 'Rapid SMART-9N'. The methods were developed using viral isolates, clinical samples, and compared to a gold-standard amplicon-based method. From a Zika virus isolate the SMART-9N approach recovered 10kb of the 10.8kb RNA genome in a single nanopore read. We also obtained full genome coverage at a high depth coverage using the Rapid SMART-9N, which takes only 10 minutes and costs up to 45% less than other methods. We found the limits of detection of these methods to be 6 focus forming units (FFU)/mL with 99.02% and 87.58% genome coverage for SMART-9N and Rapid SMART-9N respectively. Yellow fever virus plasma samples and SARS-CoV-2 nasopharyngeal samples previously confirmed by RT-qPCR with a broad range of Ct-values were selected for validation. Both methods produced greater genome coverage when compared to the multiplex PCR approach and we obtained the longest single read of this study (18.5 kb) with a SARS-CoV-2 clinical sample, 60% of the virus genome using the Rapid SMART-9N method. This work demonstrates that SMART-9N and Rapid SMART-9N are sensitive, low input, and long-read compatible alternatives for RNA virus detection and genome sequencing and Rapid SMART-9N improves the cost, time, and complexity of laboratory work.

9.
PLoS Pathog ; 16(8): e1008699, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32764827

RESUMEN

São Paulo, a densely inhabited state in southeast Brazil that contains the fourth most populated city in the world, recently experienced its largest yellow fever virus (YFV) outbreak in decades. YFV does not normally circulate extensively in São Paulo, so most people were unvaccinated when the outbreak began. Surveillance in non-human primates (NHPs) is important for determining the magnitude and geographic extent of an epizootic, thereby helping to evaluate the risk of YFV spillover to humans. Data from infected NHPs can give more accurate insights into YFV spread than when using data from human cases alone. To contextualise human cases, identify epizootic foci and uncover the rate and direction of YFV spread in São Paulo, we generated and analysed virus genomic data and epizootic case data from NHPs in São Paulo. We report the occurrence of three spatiotemporally distinct phases of the outbreak in São Paulo prior to February 2018. We generated 51 new virus genomes from YFV positive cases identified in 23 different municipalities in São Paulo, mostly sampled from NHPs between October 2016 and January 2018. Although we observe substantial heterogeneity in lineage dispersal velocities between phylogenetic branches, continuous phylogeographic analyses of generated YFV genomes suggest that YFV lineages spread in São Paulo at a mean rate of approximately 1km per day during all phases of the outbreak. Viral lineages from the first epizootic phase in northern São Paulo subsequently dispersed towards the south of the state to cause the second and third epizootic phases there. This alters our understanding of how YFV was introduced into the densely populated south of São Paulo state. Our results shed light on the sylvatic transmission of YFV in highly fragmented forested regions in São Paulo state and highlight the importance of continued surveillance of zoonotic pathogens in sentinel species.


Asunto(s)
Genoma Viral , Enfermedades de los Primates/virología , Fiebre Amarilla/veterinaria , Fiebre Amarilla/virología , Virus de la Fiebre Amarilla/genética , Zoonosis/virología , Animales , Brasil/epidemiología , Brotes de Enfermedades , Genómica , Humanos , Filogenia , Filogeografía , Enfermedades de los Primates/epidemiología , Enfermedades de los Primates/transmisión , Primates/virología , Fiebre Amarilla/epidemiología , Fiebre Amarilla/transmisión , Virus de la Fiebre Amarilla/clasificación , Virus de la Fiebre Amarilla/aislamiento & purificación , Zoonosis/epidemiología , Zoonosis/transmisión
10.
Science ; 369(6508): 1255-1260, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32703910

RESUMEN

Brazil currently has one of the fastest-growing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemics in the world. Because of limited available data, assessments of the impact of nonpharmaceutical interventions (NPIs) on this virus spread remain challenging. Using a mobility-driven transmission model, we show that NPIs reduced the reproduction number from >3 to 1 to 1.6 in São Paulo and Rio de Janeiro. Sequencing of 427 new genomes and analysis of a geographically representative genomic dataset identified >100 international virus introductions in Brazil. We estimate that most (76%) of the Brazilian strains fell in three clades that were introduced from Europe between 22 February and 11 March 2020. During the early epidemic phase, we found that SARS-CoV-2 spread mostly locally and within state borders. After this period, despite sharp decreases in air travel, we estimated multiple exportations from large urban centers that coincided with a 25% increase in average traveled distances in national flights. This study sheds new light on the epidemic transmission and evolutionary trajectories of SARS-CoV-2 lineages in Brazil and provides evidence that current interventions remain insufficient to keep virus transmission under control in this country.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Neumonía Viral/epidemiología , Neumonía Viral/transmisión , Número Básico de Reproducción , Teorema de Bayes , Betacoronavirus/clasificación , Brasil/epidemiología , COVID-19 , Prueba de COVID-19 , Ciudades/epidemiología , Técnicas de Laboratorio Clínico , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/virología , Europa (Continente) , Evolución Molecular , Genoma Viral , Humanos , Modelos Genéticos , Modelos Estadísticos , Pandemias/prevención & control , Filogenia , Filogeografía , Neumonía Viral/prevención & control , Neumonía Viral/virología , SARS-CoV-2 , Análisis Espacio-Temporal , Viaje , Población Urbana
11.
Int J Gynaecol Obstet ; 148 Suppl 2: 9-14, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31975394

RESUMEN

OBJECTIVE: To identify newborns with congenital Zika infection (CZI) at a maternity hospital in Salvador, Brazil, during the 2016 microcephaly outbreak. METHODS: A prospective study enrolled microcephalic and normocephalic newborns with suspected CZI between January and December 2016. Serology (immunoglobulins IgM and IgG) and quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) for the Zika virus were performed. Demographic and clinical characteristics of newborns with and without microcephaly were compared. RESULTS: Of the 151 newborns enrolled, 32 (21.2%) were classified as microcephalic. The majority of these cases were born between January and May 2016. IgM and IgG Zika virus antibodies were detected in 5 (23.8%) and 17 (80.9%) microcephalic newborn blood samples, respectively. Six (24%) microcephalic newborns tested positive for Zika virus by RT-qPCR in urine or placenta samples. Thirteen (11.8%) normocephalic newborns also tested positive for Zika virus by PCR in urine, plasma, or placenta samples, while IgM antibodies against Zika were detected in 4 (4.2%) others. CONCLUSIONS: Identification of 17 normocephalic CZI cases, confirmed by IgM serology or RT-qPCR for Zika virus, provides evidence that CZI can present asymptomatically at birth. This finding highlights the need for prenatal and neonatal screening for Zika virus in endemic regions.


Asunto(s)
Microcefalia/epidemiología , Complicaciones Infecciosas del Embarazo/etiología , Infección por el Virus Zika/etiología , Brasil/epidemiología , Estudios de Casos y Controles , Brotes de Enfermedades , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Recién Nacido , Enfermedades del Recién Nacido/epidemiología , Transmisión Vertical de Enfermedad Infecciosa/estadística & datos numéricos , Masculino , Microcefalia/sangre , Microcefalia/virología , Tamizaje Neonatal/métodos , Embarazo , Complicaciones Infecciosas del Embarazo/sangre , Complicaciones Infecciosas del Embarazo/epidemiología , Estudios Prospectivos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Virus Zika/aislamiento & purificación , Infección por el Virus Zika/sangre , Infección por el Virus Zika/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...